

Co₃O₄ Nanoparticles as Robust Water Oxidation Catalysts Towards Remarkably Enhanced Photostability of a Ta₃N₅ Photoanode

Maijia Liao, Jianyong Feng, Wenjun Luo, Zhiqiang Wang, Jiyuan Zhang, Zhaosheng Li,* Tao Yu, and Zhigang Zou

Despite the fact that Ta₃N₅ absorbs a major fraction of the visible spectrum, the rapid decrease of photocurrent encountered in water photoelectrolysis over time remains a serious hurdle for the practical application of Ta₃N₅ photoelectrodes. Here, by employing a Co₃O₄ nanoparticle water oxidation catalyst (WOC) as well as an alkaline electrolyte, the photostability of Ta₃N₅ electrode is significantly improved. Co₃O₄/Ta₃N₅ photoanode exhibits the best durability against photocorrosion to date, when compared with Co(OH)_x/Ta₃N₅ and IrO₂/Ta₃N₅ photoanodes. Specifically, about 75% of the initial stable photocurrent remains after 2 h irradiation at 1.2 V vs. RHE (reversible hydrogen electrode). Meanwhile, a photocurrent density of 3.1 mA cm⁻² has been achieved on Co₃O₄/Ta₃N₅ photoanode at 1.2 V vs. RHE with backside illumination under 1 sun AM 1.5 G simulated sunlight. The reason for the relatively high stability is discussed on the basis of electron microscopic observations and photoelectrochemical measurements, and the surface nitrogen content is monitored by X-ray photoelectron spectroscopic analysis.

1. Introduction

Efficient solar energy conversion and storage technologies offer desirable approaches to ameliorate stringent global energy demands and environmental sustainability^[1] Photoelectrochemical (PEC) water splitting is a potential way to capture and store the earth's abundant solar energy influx.^[2] Metal oxides, on account of their good photostability and relatively high solar energy conversion efficiency, are extensively studied as photoelectrodes for PEC conversion of solar energy into chemical fuels.^[3–5] However, due to the deeply located energy potential of O 2p orbitals,

M. J. Liao, J. Y. Feng, Dr. W. J. Luo, Z. Q. Wang, J. Y. Zhang, Prof. Z. S. Li, Prof. T. Yu, Prof. Z. G. Zou Ecomaterials and Renewable Energy Research Center National Laboratory of Solid State Microstructures Nanjing University Nanjing 210093, China E-mail: zsli@nju.edu.cn

J. Y. Feng, Prof. Z. S. Li College of Engineering and Applied Science Nanjing University Nanjing 210093, China

DOI: 10.1002/adfm.201102966

which comprise the whole or majority of the valance band maximum, visible-lightresponsive metal oxide photoelectrodes often possess insufficient reduction potential, and as a result an externally applied bias is inevitable. Meanwhile, considerable efforts have been focusing on non-oxide semiconductors with smaller band gaps and appropriate energy levels for PEC H2 production.^[6,7] However, the biggest challenge presently confronted for the practical application of these non-oxide semiconductors is how to improve chemical- and photo-stability in aqueous environment.[8,9] Among these non-oxide semiconductors, (oxy)nitrides containing Ta5+ or Ti4+, such as TaON, Ta₃N₅ and LaTiO₂N, emerge as promising candidates for PEC overall water splitting, because these (oxy)nitrides materials are able to reduce and oxidize water in the presence of appropriate sacrificial reagents under visible-light irradiation.[10-13]

The stable activities for photocatalytic H_2 or O_2 evolution suggest their great potential as highly efficient and long durable photoelectrodes working under visible-light irradiation without auxiliary voltage. Recently, Ta_3N_5 photoelectrode has attracted intensive interest, because its maximum possible solar-to-hydrogen efficiency is as high as 15.9% under AM 1.5 G irradiation. [14]

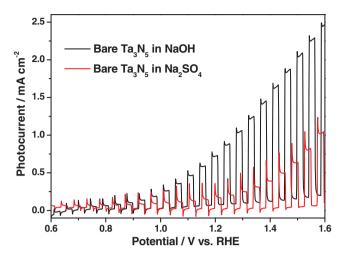
However, owing to the self-oxidative decomposition of Ta₃N₅ in which nitrogen anions are oxidized to N2 by photogenerated holes, the photocurrent of bare Ta₃N₅ photoanode becomes negligibly low within few minutes.^[14b] So far, the reported halfvalue period of the photocurrent for IrO2 loaded Ta3N5 has been estimated to be less than 10 minutes, indicating that the stability remains miserably poor for water splitting. [15] Steady photocurrent on Ta₃N₅ photoelectrode was only obtained in aqueous Fe(CN)₆³⁻/Fe(CN)₆⁴⁻ solution, which is attributable to the higher activity for Fe(CN)₆⁴⁻ oxidation compared to water oxidation.[16] The rapid decrease of photocurrent encountered in the water photoelectrolysis, even after IrO2 modification, seriously prohibits the practical application of Ta₃N₅ photoelectrode. Nevertheless, even for the generally regarded stable metal oxides photoelectrodes, such as hematite and tungsten trioxide, they exhibit good photochemical stabilities only in basic and acidic aqueous solution, respectively. [3,4] Our group also found that the selection of electrolyte is pivotal to the stability of

www.MaterialsViews.com

InGaN photoanode. [17] These facts imply that there is a means to stabilize the Ta_3N_5 photoelectrode by applying an appropriate electrolyte instead of the most commonly used Na_2SO_4 .

At the same time, the presently used precious metal oxide IrO_2 acts as a dissatisfactory WOC, due to its instability nature and poor distribution on the Ta_3N_5 surface. $I^{[15,5e]}$ Hence, concomitant with the consideration for the cost of WOCs, there comes more strict requirements on the efficiency and stability of WOCs loaded on Ta_3N_5 photoanode, for the reason that WOCs bear the responsibility of efficient promotion of O_2 evolution and long durability against chemical- and photo-corrosion in the selected electrolyte environment. Cobalt oxides, harboring two conspicuous merits of high activity for O_2 evolution and low cost, emerge as robust WOCs. Crystalline Co_3O_4 films have been proved to be catalytically efficient and stable in water electrolysis reaction in an alkaline solution. $I^{[18,19]}$ Current density as high as IOM_2 make been achieved at overpotential of IOM_2 and IOM_2 more nanoparticulated IOM_2 anode with a loading amount of IOM_2 make IOM_2 more IOM_2

In this study, Ta_3N_5 photoelectrode is expected to offer improved stability by using crystalline Co_3O_4 nanoparticles WOC, which largely helps to release photogenerated holes accumulated on the Ta_3N_5 surface. The removing of protons participates in water oxidation reaction, while the proton accepting ability is different for NaOH and Na_2SO_4 electrolytes. The effect of NaOH and Na_2SO_4 electrolyte on PEC performance of Ta_3N_5 photoelectrode is also investigated.


2. Results and Discussion

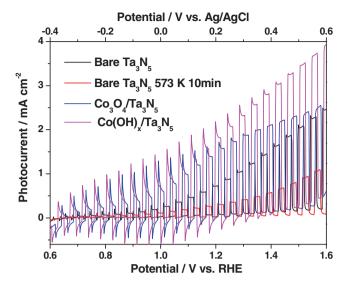
2.1. Effect of the Electrolyte on PEC Performance of Bare Ta₃N₅ Photoanodes

In powder suspension system, not only the photocatalytic activity for O2 evolution but also the durability of Ta3N5 is terribly discouraging under acidic condition. Only with the assistance of La₂O₃, which behaves as a pH buffer, can Ta₃N₅ achieve steady and prompt O2 production.[10,11] Alkaline condition seems to be favorable for promoting O2 evolution and inhibiting N2 generation. These facts indicate that basic environment may benefit the long durability of Ta₃N₅ photoanodes. Exploration experiments were conducted in most commonly used Na_2SO_4 (0.5 M, pH = 6.5) and NaOH (1 M, pH = 13.6), in order to reveal the differences of PEC performances initiated by the application of different electrolytes. Figure 1 shows the photocurrent density-potential curves measured in NaOH and Na₂SO₄ electrolytes under visible-light irradiation ($\lambda \ge 420$ nm). The obtained results clearly reveal the sharp differences in photocurrent collected in NaOH and Na2SO4. Higher photocurrent values throughout the measured potential range are achieved in NaOH compared to Na₂SO₄ at the same potentials, and at higher potentials the upgrade is more evident. This result is in accordance with the powder suspension system that alkaline condition is favorable for oxidation of water by Ta_3N_5 .[10,11]

2.2. Identification of Loaded Co Species

Co species colloids were prepared by addition of NaOH into an aqueous solution containing Co²⁺ ions, and deposited as WOCs

Figure 1. Photocurrent densities of bare Ta_3N_5 photoanodes in 1 M NaOH (black) and 0.5 M Na_2SO_4 (red) under visible-light irradiation ($\lambda \geq$ 420 nm). Unless specifically noted, all photocurrent-voltage data are collected at the scan rate of 30 mV/s.


onto Ta₃N₅ photoanode by an impregnation method. To identify the Co species WOCs, the colloids were washed by water and deposited onto glass slides for characterization. X-ray diffraction (XRD) analysis reveals that Co colloids film calcined at 573 K for 10 minutes may be roughly assigned as Co₃O₄, and Co colloids film prepared at room temperature contain Co(OH)₂ and other unknown impurity (shown in Figure S2, Supporting Information). The chemical states of Co atoms loaded onto the Ta₃N₅ photoanodes were detected by X-ray photoelectron spectroscopic analysis (XPS). Figure S3 (Supporting Information) shows the Co 2p XPS spectra of the Co species loaded photoanodes prepared at room temperature and calcined at 573 K for 10 minutes. The differences between the composite photoanodes prepared at room temperature and calcined at 573 K for 10 minutes are indistinguishable, thus failing to distinguish them from each other. To investigate them further, a Raman study was carried out on these Co species films deposited on glass slides. For an unambiguous assignment of the Raman peaks, reference sample was prepared by pasting commercial Co₃O₄ slurry onto a glass slide. The similar Raman peaks for commercial Co₃O₄ and Co species film prepared at 573 K can be ascribed to the formation of Co₃O₄ upon calcination (shown in Figure S4, Supporting Information).^[21] Co species film prepared at room temperature poses similar chemical states of Co atoms with Co₃O₄, however, it exhibits Raman peaks that are difficult to identify (shown in Figure S4, Supporting Information). Combining with the XRD analysis, Co species WOC prepared at room temperature is denoted as Co(OH)_x hereafter.

2.3. PEC Performance of Modified Ta₃N₅ Photoanodes (Co₃O₄/Ta₃N₅ and Co(OH)_x/Ta₃N₅ Composite Photoanodes)

Proper surface modification with WOCs will greatly improve the PEC performance of Ta_3N_5 electrode. Figure 2 plots the photocurrent densities versus voltage for bare Ta_3N_5 with and without short heat treatment compared to Co_3O_4/Ta_3N_5 and

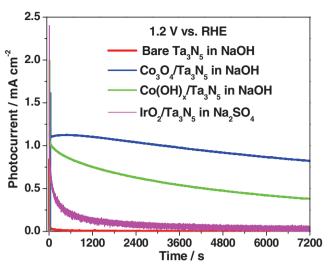

www.MaterialsViews.com

Figure 2. Photocurrent densities under visible light irradiation ($\lambda \geq 420$ nm) of $Co(OH)_x/Ta_3N_5$ photoanode prepared by impregnation of $Co(OH)_x$ colloids onto Ta_3N_5 (mauve), Co_3O_4/Ta_3N_5 photoanode prepared by calcining $Co(OH)_x/Ta_3N_5$ at 573 K for 10 minutes in air (blue), bare Ta_3N_5 without any treatment (black), and bare Ta_3N_5 electrode subjected to calcination at 573 K for 10 minutes (red). The electrolyte is 1 M NaOH (pH = 13.6).

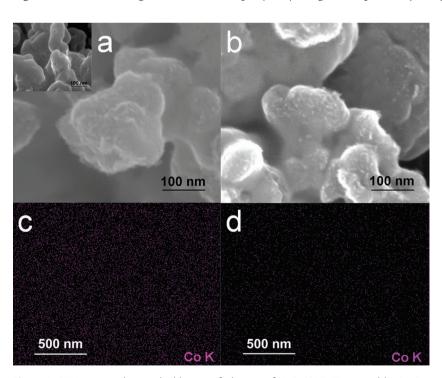
Co(OH)_x/Ta₃N₅ photoanodes under visible-light irradiation $(\lambda \ge 420 \text{ nm})$. Bare Ta₃N₅ electrode, as shown in Figure 2, is unable to withstand heat treatment at high temperature due to the bad thermal stability of Ta₃N₅ material itself, which results in a sharp decrease in photocurrent. As we expect, Co₃O₄ and Co(OH)_x modified Ta₃N₅ electrodes show better performances relative to bare Ta₃N₅ electrode in the full tested potential range. The promotional effect is more pronounced in the lower potential region than in the higher potential region. Specifically, the photocurrent at higher bias is lower for Co₃O₄ loaded Ta₃N₅ photoanode as compared to Co(OH)_x loaded Ta₃N₅ photoanode, and this slight decline for Co₃O₄ loaded Ta₃N₅ photoanode should result from heat treatment. It is interesting to note that Co(OH)_v modified Ta₃N₅ photoanode behaves better thermal stability with respect to bare Ta₃N₅ photoanode. It seems credible Co(OH)_v may serve as an efficient protection layer for Ta₃N₅ electrode during the short firing process, which also suggests the uniform and sufficient coverage of Ta₃N₅ surface by Co(OH)_x.

As mentioned above, the serious obstacle that hinders the practical application of (oxy)nitrides photoelectrodes is the poor photocurrent stability during water splitting reaction. [22] The major aim of this study is to improve the photostability of Ta_3N_5 photoelectrode. However, solely basic environment provided by NaOH electrolyte seems far from satisfying. As shown in **Figure 3**, a large initial spike in current density appears for bare Ta_3N_5 photoelectrode followed by an exponential decrease, and the steady state photocurrent is negligibly low in few seconds. The large initial spike in photocurrent upon illumination for bare Ta_3N_5 may be related with the capacitance component at the solid-liquid interface, and the rapid decrease in the photocurrent is associated with the bad photostability of Ta_3N_5 . [23] Actually, slow kinetics for water oxidation usually

Figure 3. Photocurrent decay curves measured at 1.2 V vs. RHE under visible light irradiation ($\lambda \ge 420$ nm) for Co₃O₄/Ta₃N₅ (in blue), Co(OH)_x/Ta₃N₅ (in green), bare Ta₃N₅ (red) photoelectrodes in 1 M NaOH (pH = 13.6) solution and IrO₂/Ta₃N₅ (mauve) in 0.5 M Na₂SO₄ solution (pH = 6.5). The Co(OH)_x/Ta₃N₅ photoanode was prepared by impregnation of Co(OH)_x colloids onto Ta₃N₅, the IrO₂/Ta₃N₅ photoanode was prepared by impregnation of IrO₂ colloids onto Ta₃N₅, and Co₃O₄/Ta₃N₅ photoanode was prepared by calcining Co(OH)_x/Ta₃N₅ at 573 K for 10 minutes in air.

results in holes accumulation at the surface, and subsequent surface oxidative decomposition of Ta₃N₅ occurs. Consequently, WOCs loaded onto the Ta₃N₅ surface may prompt the O₂ evolution and hinder self-oxidative decomposition of Ta₃N₅, which is favorable for the photostability of Ta₃N₅ photoelectrode. As can be seen, the photocurrent decay curves for Co(OH)_x/Ta₃N₅ and Co₃O₄/Ta₃N₅ photoanodes show substantial enhancement in photostability. Similar spikes are also found on both Co(OH)_x/ Ta₃N₅ and Co₃O₄/Ta₃N₅ electrodes, and some of the initial spikes in the current densities may be attributed to cobalt oxidation, which is an essential step in the water oxidation mechanism.[24] Sustaining decrease in the photocurrent is observed on Co(OH)_x/Ta₃N₅ photoanode during 2 h visible-light irradiation under positive bias in alkaline solution, and this decline trend is similar with that of IrO₂ modified Ta₃N₅ photoanode.^[15] An unexpected phenomenological observation on Co₃O₄/Ta₃N₅ photoanode is that a small gradual increase to steady state is followed by asymptotic decrease in photocurrent, while only exponential decay to a lower current densities are obtained on both Co(OH)_x/Ta₃N₅ and bare Ta₃N₅ photoanodes. Noticeably, after visible-light irradiation for 2 h, about 75% of the initial stable state photocurrent is maintained for Co₃O₄/Ta₃N₅ photoanode, while for Co(OH)_x/Ta₃N₅ photoanode this value is only less than 38%. Dark for a time interval of several seconds and illuminating the photoanodes again cannot recover the photocurrent of both Co(OH)_x/Ta₃N₅ and Co₃O₄/Ta₃N₅ photoanodes, suggesting that the photocurrent decay is not derived from the kinetic bottleneck in the O2 evolution reaction and deleterious reactions must occur irreversibly during the PEC measurement. For comparison, we have also tested the photostability of IrO2/Ta3N5 photoanode, which shows inferior photostability to both Co(OH)_x/Ta₃N₅ and Co₃O₄/Ta₃N₅ photoanodes.

ADVANCED FUNCTIONAL MATERIALS


www.afm-journal.de

www.MaterialsViews.com

During the course of stability measurement, bubbles were observed on the surface of photoanodes, indicating the formation of O₂ upon light irradiation. As a result, the decrease in photocurrent of Co(OH)_x/Ta₃N₅ photoanodes might be partially attributed to O2 evolution induced detachment of Co(OH)x WOC. Compared with Co(OH)_x/Ta₃N₅, Co₃O₄/Ta₃N₅ photoanode exhibits better photocurrent stability because Co₃O₄ WOC may firmly anchored onto Ta₃N₅ surface with the assistance of heat treatment. The integration of photocurrent decay curve of the Co₃O₄/Ta₃N₅ photoanode shows that 7.1 C of electrons has passed through the circuit during 2 h measurement, corresponding to 73.6 umol of electrons, while the estimated amount of corresponding Ta₃N₅ is ca. 0.6 μmol and the amount of loaded Co_3O_4 is 0.02 μ mol (estimated from the energy dispersive X-ray results, EDX). The turnover number in this reaction is calculated to be 123 on the basis of Ta₃N₅, indicating that the majority of photocurrent on Co₃O₄/Ta₃N₅ photoanode is associated with water oxidation, not merely caused by the selfoxidative decomposition of the Ta₃N₅ itself.

2.4. SEM and TEM Investigation of Modified Ta₃N₅ Photoanodes

It is urgent to depict the distribution of $Co(OH)_x$ and Co_3O_4 WOCs on the Ta_3N_5 surface, for protecting effect provided by $Co(OH)_x$ during heat treatment as well as greatly improved PEC performance including photocurrent and photostability may largely depend on the existing status of WOCs.^[15] **Figure 4** shows scanning electron microscopic (SEM) images

Figure 4. SEM images showing highly magnified views of a) $Co(OH)_x/Ta_3N_5$ and b) Co_3O_4/Ta_3N_5 photoanodes. Maps of the Co (K) signal intensity of c) $Co(OH)_x/Ta_3N_5$ and d) Co_3O_4/Ta_3N_5 photoanodes on the large scale. Inset in (a) shows the high-magnification SEM image of the bare Ta_3N_5 photoanode.

of Co(OH)_x/Ta₃N₅ and Co₃O₄/Ta₃N₅ photoanodes. Inset in Figure 4a indicates that bare Ta₃N₅ particles are irregular in the size range of several hundred nanometers and their porous surfaces are formed during nitridation.^[10] With respect to the bare Ta₃N₅, Co(OH)_v loaded Ta₃N₅ electrode reveals slightly obscurer surface, which is ascribed to the coverage of Co(OH)_v. Meanwhile, fairly uniform distribution of Co(OH)_x can be observed on a large scale, which may contribute to the protecting effect during thermal treatment and improved PEC performance of Co(OH)_x loaded Ta₃N₅ electrode. In addition, we perform EDX analysis on a large area of the Co(OH), loaded Ta₃N₅ film, and the element mapping of cobalt yields similar result with SEM observation, implying uniform Co(OH)_x coverage on the large scales of Ta₃N₅ electrode (shown in Figure 4c). Figure 4b reveals that distinct Co₃O₄ nanoparticles with diameter of about 10 nm are dottedly distributed on the Ta₃N₅ surface. The relatively larger Co₃O₄ nanoparticles compared to Co(OH)_v is mainly aroused by thermal treatment, and thermal treatment also leads to more sparse distribution of Co₃O₄ on the Ta₃N₅ surface, as can be identified by the SEM observations and element mapping of cobalt (see Figure 4b,d). Nevertheless, in the case of Co₃O₄/Ta₃N₅ photoanode, the distribution of Co₃O₄ on the Ta₃N₅ surface is still uniform as displayed by the element mapping of cobalt. Overall, both Co(OH)_v/Ta₃N₅ and Co₃O₄/ Ta₃N₅ photoanodes show uniform distribution of the WOCs, even though the latter suffers short firing treatment. Therefore, the well distribution of WOCs may contribute greatly to the improved PEC performance of the photoelectrodes.

However, from the SEM and EDX analysis we can only explain why the photocurrent and photostability of composite

photoelectrodes are improved, and the reasons for different photostability exhibited on Co(OH)_x/Ta₃N₅ and Co₃O₄/Ta₃N₅ photoelectrodes still should be digged out. Transmission electron microscopic (TEM) measurements were conducted to uncover the underlying discrepance between Co(OH)_v/ Ta₃N₅ and Co₃O₄/Ta₃N₅ photoelectrodes. The Co(OH)_x/Ta₃N₅ and Co₃O₄/Ta₃N₅ particles were peeled from the corresponding photoelectrodes for TEM observation. As can be clearly seen in Figure 5a, floccules cover the porous Ta₃N₅ particles sufficiently as indicated by the black arrows, and even the surfaces of inner pores are occupied by these floccules (denoted by a white arrow and a circle). The amorphous nature of these floccules is determined by high-resolution TEM (HRTEM) characterization collected from the interfacial region (indicated by a white square). The lattice spacing of 0.28 nm can be readily assigned to (0 2 3) crystal plane of Ta₃N₅ (JCPDS 79-1533), and Ta₃N₅ particles are bonded with these floccules. The amorphous floccules are finally identified as Co(OH)x instead of products associated with postnecking treatment by TaCl₅, for the apparent shape of TaON or N-doped Ta2O5 bridges deriving from TaCl₅ treatment is

www.MaterialsView

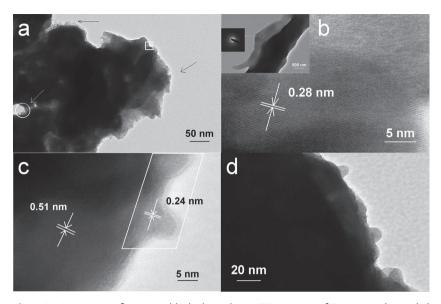


Figure 5. a) Low-magnification and b) high-resolution TEM images of Ta₁N₅ particles peeled from the Co(OH),/Ta₃N₅ photoanode. c) High-resolution and d) low-magnification TEM images of Ta₃N₅ particles peeled from Co₃O₄/Ta₃N₅ photoanode. Inset in (b) shows low magnification TEM image and selected area electron diffraction (SAED) pattern of a Ta₃N₅ particle peeled from the Ta₃N₅ photoanode after postnecking treatment for reference.

quite different from these floccules. Additionally, TaON or N-doped Ta₂O₅ bridges behave as a semi-transparent but monolithic object while Co(OH)x nanoparticles are more discrete (see inset in Figure 5b). Upon short calcination, amorphous Co(OH)_x floccules are converted into Co₃O₄ nanoparticles, because interplanar distance of 0.24 nm can be indexed as (3 1 1) crystal plane of Co₃O₄ (JCPDS 42-1467). The result is also in good accordance with Raman analysis. The Co₃O₄ nanoparticles are in the size range of several nanometers, indicating that Co(OH)_v floccules tend to aggregate into larger particles upon heat treatment. Panel (d) in Figure 5 depicts the distribution of Co₃O₄ WOC on Ta₃N₅ surface, as the hemispherical particles with diameter of ca. 10 nm can be assigned to Co₃O₄. The distribution of Co₃O₄ WOC is inferior to that of Co(OH)_x, which is consistent with SEM and EDX analysis, and the slight aggregation of Co₃O₄ nanoparticles WOC is aroused by thermal

Panel (c) in Figure 5 also shows the (0 2 0) crystal plane of Ta₃N₅ with lattice spacing of 0.51 nm. The most noticeable changes upon calcination are the formation of large-scale interfacial contacts between the Ta₃N₅ matrix and Co₃O₄ WOC, as pointed out by a white parallelogram. The nanojunctions between Ta₃N₅ matrix and Co₃O₄ nanoparticles WOC are so compact that they may ensure efficient transfer of photogenerated holes across the interfaces. Meanwhile, the compact interfaces signify the good mechanical strength of Co₃O₄ nanoparticles WOC anchoring onto Ta₃N₅ surface. Besides, the interfacial electronic structure might also contribute to the superior performance of Co₃O₄/Ta₃N₅ photoelectrode.^[5a] Therefore, heat treatment is favorable for the formation of large scale and compact nano-junctions although it can also lead to the unfavorable oxidation of Ta₃N₅. Upon heat treatment the photostability of Co₃O₄/Ta₃N₅ electrode is improved, which is at the expense of

the decreased photocurrent. Through this unique short firing process, we achieve the optimal PEC performance balanced between the photostability and activity.

2.5. Effect of the Electrolyte on the PEC Performances of Modified Ta₃N₅ Photoanodes

Up to now, pronounced enhancement in photostability of Co₃O₄/Ta₃N₅ photoelectrode can be explained at least partly by the uniformly distributed and compact nanojunctions formed between Co₃O₄ nanoparticles and Ta2N5 matrix. It is required to understand the role of NaOH electrolyte in improving the PEC performance of Co₃O₄/ Ta₃N₅ photoelectrode. Then the photocurrent of Co₃O₄/Ta₃N₅ photoanode was tested in 0.5 M Na₂SO₄ in order to exclude the effect of basic condition. As shown in inset of Figure 6, Co₃O₄/Ta₃N₅ performs much better in the NaOH electrolyte than in Na2SO4 electrolyte, which is analogous with bare Ta₃N₅ (Figure 1) and Co(OH)_x/Ta₃N₅ photoelectrodes (see Figure S5, Supporting

Information). These data clearly reveal the superiority of alkaline solution as the supporting electrolyte for better PEC performances on Ta₃N₅ photoelectrodes.

As water oxidation reaction involves the removing of protons, it is conceivable that slow water oxidation kinetics may be not only induced by inappropriate modification of WOCs, but also closely interrelated with the poor proton-accepting capability of the supporting electrolyte. [25] In Na2SO4 electrolyte, protons elimination depends on their diffusion into bulk solution

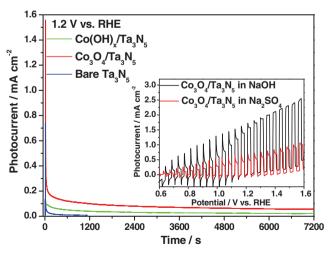


Figure 6. Photocurrent decay curves measured at 1.2 V vs. RHE under visible light irradiation ($\lambda \ge 420$ nm) for Co₃O₄/Ta₃N₅ (red), Co(OH)_x/ Ta_3N_5 (green) and bare Ta_3N_5 (blue) photoelectrode in 0.5 M Na_2SO_4 (pH = 6.5) solution. Inset shows photocurrent densities of Co_3O_4/Ta_3N_5 composite photoanodes in 1 M NaOH (black) and 0.5 M Na₂SO₄ (red) under visible light irradiation ($\lambda \ge 420$ nm).

ADVANCED FUNCTIONAL MATERIALS

Www.afm-journal.de

and the diffusion process is slow, therefore, holes accumulation and slow water oxidation kinetics are expected. For metal oxide photoelectrodes, holes accumulation usually results in recombination of electrons and holes, which is unfavorable for water splitting but can be effectively circumvented by large applied potentials. [3c] As for Ta₃N₅ photoelectrodes, when the consumption of holes by water oxidation is inefficient, holes accumulation will be alternatively alleviated through self-oxidative decomposition of Ta₃N₅. Avoiding the holes accumulation and accelerating the water oxidation kinetics are pivotal to improve the PEC property of Ta₃N₅ photoelectrodes, especially their photostability.

From the above analysis, none of the Co₃O₄/Ta₃N₅, Co(OH)_v/Ta₃N₅ and bare Ta₃N₅ photoanodes can achieve satisfying photostability when Na₂SO₄ is applied. As we anticipated, the photocurrent decay curves collected in Figure 6 show sharp decrease following the initial high spikes within few seconds. This result upholds our hypothesis that poor proton-accepting electrolyte will increase the O₂ evolution kinetic barrier and do harm to the photostability of Ta₃N₅. Accordingly, comparing with Na2SO4, the mechanism of NaOH electrolyte in promoting the PEC performance of Co₃O₄/Ta₃N₅ photoelectrode can be explained by its better proton-accepting ability.[3c]

The bad photostability of Co₃O₄/Ta₃N₅ photoanode in Na₂SO₄ may come from the poor chemical stability of Co₃O₄ and/or the kinetic bottleneck of water oxidation. The former is due to the acidic neighbouring environment after O2 production, and the latter is associated with low protons removing rate by Na₂SO₄ electrolyte. Besides WOCs, slow kinetics of water oxidation may also derive from electrolytes. We have compared the photocurrents of bare Ta₃N₅ electrodes in Na₂SO₄ and NaOH solution, for O2 evolution kinetic barrier can only be ascribed to the proton removing rates by the electrolytes for bare Ta₃N₅ electrodes. The PEC results (shown in Figure 1) justify that a poor proton-accepting electrolyte indeed contributes to O2 evolution kinetic barrier, and explain why the durability of Ta₃N₅ is terribly discouraging under acidic condition in powder suspension system.^[10,11] This finding sheds light on the importance of facilitating the kinetics of water oxidation, which is associated with both WOCs and the electrolyte, only through parallel optimization of both WOCs and the electrolyte can we achieve efficient and steady O2 evolution.

2.6. XPS Analysis of Ta_3N_5 Photoanodes Before and After Light Irradiation

As surface nitrogen contents are important parameters for evaluating the PEC properties of Ta_3N_5 photoelectrodes, surface nitrogen contents under different conditions were

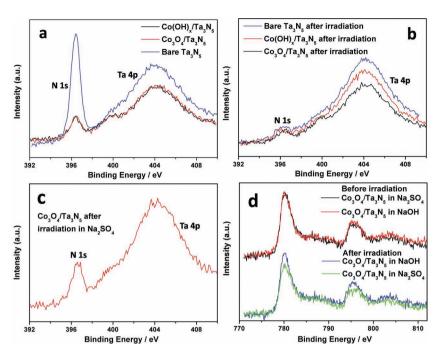


Figure 7. XPS spectra of a) N 1s for bare Ta_3N_5 , $Co(OH)_x/Ta_3N_5$ and Co_3O_4/Ta_3N_5 photoelectrodes before photostability measurement; b) N 1s for bare Ta_3N_5 , $Co(OH)_x/Ta_3N_5$ and Co_3O_4/Ta_3N_5 and Co_3O_4/Ta_3N_5 photoelectrodes under visible light irradiation for 2 h at 1.2 V vs. RHE in 1 M NaOH (pH = 13.6); c) N 1s for Co_3O_4/Ta_3N_5 photoelectrode under visible light irradiation for 2 h at 1.2 V vs. RHE in 0.5 M Na₂SO₄ (pH = 6.5); and d) Co 2p for Co_3O_4/Ta_3N_5 photoelectrodes before and after photostability measurement in 1 M NaOH and 0.5 M Na₂SO₄, photostability measurements were conducted at 1.2 V vs. RHE for 2 h under visible light irradiation ($\lambda \ge 420$ nm).

monitored by XPS analysis on these composite and bare Ta₃N₅ photoanodes. Panel (a) in Figure 7 clearly illustrates that after loading of Co(OH)_v and Co₃O₄ WOCs on Ta₃N₅ the intensity of N 1s peaks shrink largely compared to bare Ta₃N₅ film, which is due to the shielding effect of Co(OH)_v and Co₃O₄ coverage on the Ta₃N₅ surface. After photostability measurement in 1 M NaOH, the N 1s peak of bare Ta₃N₅ becomes merely distinguishable while before current-time measurement N 1s peak is intense, and this sharp decay is due to the serious surface oxidation of Ta₃N₅ (shown in Figure 7b).^[23] In contrast, surface nitrogen losses of Ta₃N₅ after Co(OH)_v and Co₃O₄ modification are greatly suppressed although Co₃O₄/Ta₃N₅ and Co(OH)_v/ Ta₃N₅ indeed suffer surface oxidation. It is because Co(OH)_x and Co₃O₄ WOCs can greatly alleviate the unfavorable accumulation of photogenerated holes by accelerating the water oxidation kinetics with the assistance of NaOH. Unsatisfactory photostability performance is observed on Co₃O₄/Ta₃N₅ photoanode in 0.5 M Na₂SO₄ (pH = 6.5), and surprisingly much richer N content is detected compared to Co₃O₄/Ta₃N₅ measured in 1 M NaOH solution after photostability test (shown in Figure 7c). The larger peak area of N 1s might suggest the detachment even dissolution of Co₃O₄ from Ta₃N₅ surface and correspondingly enhanced exposure of Ta₃N₅ surface. Panel (d) in Figure 7 presents the Co 2p peaks of Co₃O₄/Ta₃N₅ photoanodes before and after the photostability test, and no perceivable differences were observed before photostability measurement. The decreased Co 2p peak area in Co₃O₄/Ta₃N₅

www.MaterialsViews.com

photoanode performed in 0.5 M Na₂SO₄ indicates the diminished Co₃O₄ coverage. It is reasonable to consider that in the case of Na₂SO₄ electrolyte O₂ production is accompanying with decreased pH value of neighbouring electrolyte, and instable nature of Co₃O₄ in acidic environment may initiate detachment even dissolution of Co₃O₄ from Ta₃N₅ surface.^[18] As a result, it seems plausible that the diminished Co₃O₄ coverage is responsible for the unexpected increase in N 1s peak area for Co₃O₄/ Ta₃N₅ tested in Na₂SO₄ electrolyte.

Effects of WOCs on the stability are usually evaluated by the oxidation degree of Ta₃N₅ surface.^[15] Contrary to previous reports, we demonstrate that photostability is not always consistent with N content of Ta₃N₅ surface. Specifically, Co₃O₄/ Ta₃N₅ photoanode possesses larger N content but exhibits extremely poor photostability when tested in Na₂SO₄ comparing with that tested in 1 M NaOH. The influence of WOCs on the N detection by XPS should be taken in consideration, for they conceal the Ta₂N₅ surface and they may peel off during PEC measurement, resulting in enhanced exposure of Ta₃N₅ surface. These extraordinary but rational N contents variation presented here demonstrates that probing N content is not a precise strategy for evaluating the photostability of Ta₃N₅ photoelectrode.

2.7. Photocurrent Action Spectra and Photoresponse of Co₃O₄/ Ta₃N₅ Composite Photoanodes Under AM 1.5 G Illuminaion

To display a more acceptable and standard form of PEC performance on the Co₃O₄/Ta₃N₅ electrode, the incident photon to current efficiency (IPCE) was measured under monochromatic light irradiation and plotted as a function of wavelength at various voltages, the results of which are shown in Figure 8. With IPCE value of 26% at 400 nm and 24% at 550 nm under 1.2 V vs. RHE as well as 40% at 400 nm and 36% 550 nm under

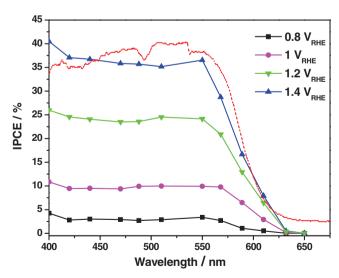
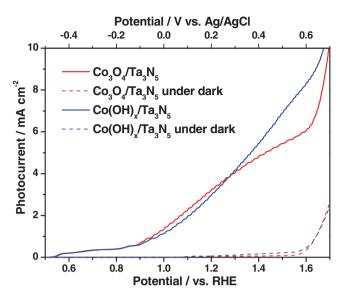
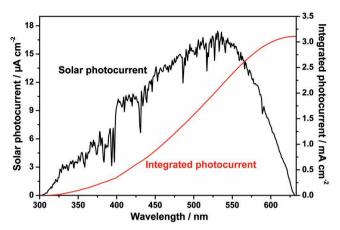


Figure 8. Incident photon to current efficiency (IPCE) spectra of the Co₃O₄/Ta₃N₅ electrode at 1.4 V vs. RHE (blue), 1.2 V vs. RHE (green), 1.0 V vs. RHE (mauve), 0.8 V vs. RHE (black). All the data were collected in 1 M NaOH solution. The absorption spectrum of bare Ta₃N₅ photoanode is also shown for reference (dotted red).




Figure 9. Current-voltage characteristics of Co₃O₄/Ta₃N₅ and Co(OH)_x/ Ta₃N₅ photoanodes in the dark and under AM 1.5 G 100 mW/cm² simulated sunlight at a scan rate of 30 mV/s, measured in 1 M NaOH.

1.4 V vs. RHE, this photoelectrode has fairly exceeded previously reported bare Ta₃N₅ electrodes, including highly oriented Ta₃N₅ nanotube array photoanode. [16,26] IPCE values increase with increasing externally applied bias, on account of electrical bias facilitating the separation of the electron-hole pairs. Nearly 2.5-fold enhancement of IPCE from 10% to 25% in the visible light range of 400 to 550 nm is achieved when the applied bias is elevated from 1.0 to 1.2 V vs. RHE. However, under lower bias the IPCE value decreases steeply, and the PEC performance of Co₃O₄/Ta₃N₅ photoanode is far from satisfactory, which may root from the intrinsically high defective feature of Ta₃N₅ material. Efforts to increase the IPCE values under lower bias are still underway in our laboratory. Furthermore, the photocurrent response of Co₃O₄/Ta₃N₅ film exhibits almost the same feature as the absorption spectrum of Ta₃N₅ electrode film, suggesting that the observed photocurrent is based on band gap transition of Ta₃N₅.

It is necessary to present more visual information on the PEC performance of Co₃O₄/Ta₃N₅ under standard condition. Then we conducted photocurrent-voltage measurement under AM 1.5 G 100 mW/cm² simulated sunlight condition. Figure 9 represents the obtained current-voltage curve of Co₃O₄/Ta₃N₅ photoanode, and Co(OH)_v/Ta₃N₅ is also shown for comparison. The dark current of Co(OH)_x/Ta₃N₅ anode is slightly higher than Co₃O₄/Ta₃N₅ anode up to about 1.6 V vs. RHE, where the fierce electrocatalytic oxygen evolution starts and dark currents increase strongly. The photocurrent curve of Co₃O₄/Ta₃N₅ anode depicts an almost linear rise from 0.9 V to 1.4 V vs. RHE, after which the increase of photocurrent becomes slow, and finally the plateau photocurrent of about 6 mA/cm² appears at 1.6 V vs. RHE before the drastic climb of dark current. By contrast, the photocurrent curve of Co(OH)x/Ta3N5 film experiences a much steeper rise between 1.0 V and 1.6 V vs. RHE and reaches the maximum photocurrent as high as 8 mA/cm² at 1.6 V vs. RHE. The full potential of Co_3O_4/Ta_3N_5 anode is

ADVANCED FUNCTIONAL MATERIALS

www.afm-journal.de

Figure 10. Solar photocurrent spectrum of the $\text{Co}_3\text{O}_4/\text{Ta}_3\text{N}_5$ electrode at 1.2 V vs. RHE obtained by multiplication of its IPCE spectrum with the photon flux spectrum of global sunlight (100 mW/cm² AM 1.5 G) (black). Integrated photocurrent under global sunlight between 300 nm and 630 nm (red).

much lower than that of Co(OH)_x/Ta₃N₅ film (6 mA/cm² versus 8 mA/cm²), which can be attributed to the unfavorable oxidation of Ta₃N₅ during heat treatment on Co₃O₄/Ta₃N₅ anode. Despite of damaging heat treatment, photocurrent density as high as 3.18 mA/cm² is obtained on Co₃O₄/Ta₃N₅ electrode at 1.2 V vs. RHE, while 2.9 mA/cm² is achieved by Co(OH)_v/Ta₃N₅ film. The slightly larger photocurrent on Co₃O₄/Ta₃N₅ electrode may benefit from the contribution of high energy photons ($\lambda \leq$ 420 nm). Note that Co(OH)_x loading greatly facilitates the performance at higher bias, while Co₃O₄/Ta₃N₅ electrode exhibits better performance at more cathodic potentials. This behavior of Co₃O₄/Ta₃N₅ photoanode again emphasizes the importance of abundant and compact interfaces, for these interfaces greatly facilitate efficient transfer of photogenerated holes at lower bias. Overall, the data collected under AM 1.5 G illumination demonstrate the great potential of Co₃O₄/Ta₃N₅ as high efficient photoelectrode, and there is much room for further improvement of Co₃O₄/Ta₃N₅ photoanode through more smart loading methods of Co₃O₄ WOC.

To verify the photocurrent value at 1.2 V vs. RHE, multiplication of the obtained IPCE spectrum with standard solar spectral distribution was carried out, yielding the solar photocurrent spectrum (see **Figure 10**). The total photocurrent obtained by integration over the solar photocurrent spectrum is $3.12 \, \text{mA/cm}^2$ at 1.2 V vs. RHE, while the measured value is $3.18 \, \text{mA/cm}^2$. The negligible difference between the calculated and tested photocurrent values states that the light source precisely simulated the AM 1.5 G solar emission in the photocurrent responsive range of $\text{Ta}_3 \text{N}_5$ electrode, and the IPCE values as well as photocurrent under AM 1.5 G simulated sunlight are credible.

3. Conclusions

In summary, prominent improvement in photostability of Ta_3N_5 photoanode for PEC water splitting has been experimentally demonstrated. In detail, by employing robust and cheap Co_3O_4 nanoparticles WOC, about 75% of initial stable photocurrent

maintains after 2 h irradiation at 1.2 V vs. RHE, which gives to date the best durability against photocorrosion by comparing with Co(OH)_x/Ta₃N₅ and IrO₂/Ta₃N₅ photoanodes under the same condition. On top of good photostability, Co₃O₄ nanoparticles loaded Ta₃N₅ photoanode achieves photocurrent density as high as 3.1 mA/cm² at 1.2 V vs. RHE with backside illumination under 1 sun AM 1.5 G simulated sunlight. The uniform distribution of Co₃O₄ nanoparticles WOC on Ta₃N₅ surface coupling with the abundant and compact nano-junctions formed between Co₃O₄ and Ta₃N₅ contribute to the relatively high stability. The poor proton-accepting property of Na₂SO₄ induced kinetic bottleneck of O2 evolution is circumvented by replacing Na2SO4 with NaOH, and remarkably improved photocurrent stability is realized in the presence of both Co₃O₄ nanoparticles WOC and NaOH electrolyte. Our finding sheds light on the importance of accelerating the kinetics of water oxidation for the improvement of photostability on Ta₃N₅ photoelectrodes, and the kinetics of water oxidation is associated with both WOCs and the electrolytes. Only by parallel optimization of both WOCs and the electrolytes can we achieve efficient and steady O2 evolution. To make it more intriguing, the present simple loading strategy actually enables uniform distribution and compact nano-junctions of Co₃O₄ WOC on Ta₃N₅ photoanode surface and opens a broad prospect for the practical application of these (oxy)nitrides photoelectrodes. Further improvement of the performance of these Ta₃N₅ photoanodes will be focused on enhancing IPCE values at lower voltages, by choosing efficient loading method as well as optimizing processing temperature and WOCs loading amounts of Co₃O₄ nanoparticles WOCs. These investigations are now ongoing in our lab, and we believe other (oxy)nitrides photoelectrodes, examples including SrNbO2N, TaON, LaTiO2N and LaTaON2, can also be stabilized through this unique strategy.

4. Experimental Section

Fabrication of Ta_3N_5 Photoanode: In the light of recent report on TaON and Ta_3N_5 photoanodes fabricated using electrophoresis deposition (EPD) method followed by necking treatment, we prepared Ta_3N_5 photoelectrode in a similar way. $I^{15,22}$ Ia_3N_5 powder was synthesized by heating Ta_2O_5 powder at 1123 K for 15 h under a flow of ammonia gas (flow rate: 500 mL/min). Ta_3N_5 powder suspension for EPD was obtained by dispersing iodine (10 mg) and Ta_3N_5 (40 mg) powder in acetone (50 mL) with the assistance of sonication. EPD process was conducted between two parallel FTO electrodes with the distance of 1 cm under 10 V of bias for 3 minutes. The area of Ta_3N_5 film was call cm \times 1 cm, the amount of Ta_3N_5 powder deposited on FTO electrode was ca. 0.35 mg. The electrode was dried in air, and then dropped with $TaCl_5$ methanol solution (10 mM, 10 μ L). This procedure was repeated for five times. Finally, the dropped electrode was then heated at 773 K for 30 minutes (NH3 flow rate: 500 mL/min).

Deposition of Co Species WOCs on Ta_3N_5 Photoanode: The deposition of Co species WOCs onto Ta_3N_5 photoanode was carried out by an impregnation method as the following procedures. The colloidal $Co(OH)_x$ solution was firstly prepared by the addition of NaOH into an aqueous solution containing Co^{2+} ions. The Ta_3N_5 electrode was then immersed into the as prepared $Co(OH)_x$ colloidal solution for 1 h, washed with distilled water and then dried in air. The amount of $Co(OH)_x$ loaded onto Ta_3N_5 electrode was determined by energy dispersive X-ray (EDX) analysis. When it came to Co_3O_4 loading, $Co(OH)_x/Ta_3N_5$ electrode was calcined at 573 K for 10 minutes in air.

Photoelectrochemical Characterization: Photoelectrochemical measurements were carried out in a three-electrode configuration using an aqueous hydroxide electrolyte (1 M NaOH, pH 13.6), with Ta₃N₅ film as the working electrode, Ag/AgCl as the reference electrode, and Pt foil as the counter electrode. Potentials are reported vs. reversible hydrogen electrode (RHE), which is obtained using the formula $E_{RHE} = E_{Ag/AgCl} + 0.0591 pH + 0.1976 \ V.$ Photocurrent densities under visible-light irradiation were obtained by using a 500 W xenon lamp fitted with a cut-off filter (Hoya L-42). All films were illuminated from the backside of the Ta₃N₅ photoanodes. The irradiated area was circular with a diameter of ca. 6 mm and photocurrent densities were normalized to 1 cm². The incident photon to current efficiency (IPCE) was measured under monochromatic light irradiation, provided by the xenon lamp equipped with band pass filters. The light intensity was obtained with a photometer (Newport, 840-C).

Sample Characterization: The crystal structures of all the samples were measured by powder x-ray diffraction (XRD, Rigaku Ultima III) with Cu K α radiation (λ = 1.54056 Å). The optical absorption spectra of the samples were performed on an UV-visible (UV-VIS) spectrophotometer (Shimadzu, UV-Vis 2550). The morphology of the Ta₃N₅ photoanodes was observed by field-emission scanning electron microscopy (FE-SEM; Nova NanoSEM 230, FEI) and EDX analyses were performed by an adjunct energy dispersive spectrometer. No conductive coating was deposited onto samples for these measurements. TEM analysis was conducted on a high-resolution transmission electron microscope (JEM-2100). The surface nitrogen contents were analyzed using X-ray photoelectron spectroscopy (XPS; Thermo Scientific K-Alpha).

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

M.J.L. and F.Y.F. contributed equally to this work. This work is supported by a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the National Natural Science Foundation of China (Nos. 21073090, 11174129 and 50902068), the National Basic Research Program of China (Grants No. 2011CB933303), the Jiangsu Provincial Science and Technology Research Program (Grant No. BK2011056). This article was amended on July 24, 2012. The greyscale figures that were originally published online were replaced with color versions.

> Received: December 7, 2011 Revised: February 9, 2012 Published online: April 17, 2012

- [1] a) A. Heller, Science 1984, 223, 1141; b) M. Grätzel, Nature 2001, 414, 338; c) N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729; d) N. S. Lewis, Science 2007, 315, 798; e) C. Grimes, O. K. Varghese, S. Ranjan, Light, Water, Hydrogen, Springer, New York 2007.
- [2] A. Fujishima, K. Honda, Nature 1972, 238, 37.
- [3] a) D. K. Zhong, M. Cornuz, K. Sivula, M. Gräetzel, D. R. Gamelin, Energy Environ. Sci. 2011, 4, 1759; b) M. Zhang, W. Luo, Z. Li, T. Yu, Z. Zou, Appl. Phys. Lett. 2010, 97, 042105; c) D. K. Zhong, D. R. Gamelin, J. Am. Chem. Soc. 2010, 132, 4202; d) S. D. Tilley, M. Cornuz, K. Sivula, M. Gräetzel, Angew. Chem. Int. Ed. 2010, 49,

6405; e) D. K. Zhong, J. Sun, H. Inumaru, D. R. Gamelin, J. Am. Chem. Soc. 2009, 131, 6086; f) A. Kay, I. Cesar, M. Gräetzel, J. Am. Chem. Soc. 2006, 128, 15714; g) I. Cesar, A. Kay, J. Martinez, M. Grätzel, J. Am. Chem. Soc. 2006, 128, 4582.

- [4] a) B. D. Alexander, P. J. Kulesza, L. Rutkowska, R. Solarska, J. Augustynski, J. Mater. Chem. 2008, 18, 2298-2303; b) C. Santato, M. Odziemkowski, M. Ulmann, J. Augustynski, J. Am. Chem. Soc. 2001, 123, 10639; c) C. Santato, M. Ulmann, J. Augustynski, J. Phys. Chem. B 2001, 105, 936.
- [5] a) M. Long, W. Cai, H. Kisch, J. Phys. Chem. C 2008, 112, 548; b) K. Sayama, A. Nomura, T. Arai, T. Sugita, R. Abe, M. Yanagida, T. Oi, Y. Iwasaki, Y. Abe, H. Sugihara, J. Phys. Chem. B 2006, 110, 11352; c) K. Sayama, A. Nomura, Z. G. Zou, R. Abe, Y. Abe, H. Arakawa, Chem. Commun. 2003, 2908; d) W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Wang, S. Yan, T. Yu, Z. Zou, Energy Environ. Sci. 2011, 4, 4046; e) H. Ye, H. S. Park, A. J. Bard, J. Phys. Chem. C 2011, 115, 12464.
- [6] E. R. Young, R. Costi, S. Paydavosi, D. G. Nocera, V. Bulovic, Energy Environ. Sci. 2011, 4, 2058.
- [7] J. J. H. Pijpers, M. T. Winkler, Y. Surendranath, T. Buonassisi, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2011, 108, 10056.
- [8] Y. W. Chen, J. D. Prange, S. Duehnen, Y. Park, M. Gunji, C. E. D. Chidsey, P. C. McIntyre, Nat. Mater. 2011, 10, 539.
- [9] O. Khaselev, J. A. Turner, Science 1998, 280, 425.
- [10] T. Takata, G. Hitoki, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, Res. Chem. Intermed. 2007, 33, 13.
- [11] M. Hara, G. Hitoki, T. Takata, J. N. Kondo, H. Kobayashi, K. Domen, Catal. Today 2003, 78, 555.
- [12] A. Kasahara, K. Nukumizu, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, J. Phys. Chem. B 2003, 107, 791.
- [13] W. J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Matsumoto, K. Domen, J. Phys. Chem. B 2003, 107, 1798.
- [14] a) A. B. Murphy, P. R. F. Barnes, L. K. Randeniya, I. C. Plumb, I. E. Grey, M. D. Horne, J. A. Glasscock, Int. J. Hydrogen Energy 2006, 31, 1999; b) D. Yokoyama, H. Hashiguchi, K. Maeda, T. Minegishi, T. Takata, R. Abe, J. Kubota, K. Domen, Thin Solid Films 2011, 519,
- [15] M. Higashi, R. Abe, K. Domen, Energy Environ. Sci. 2011, 4, 4138.
- [16] A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, K. Domen, J. Phys. Chem. B 2004, 108, 11049.
- [17] W. Luo, B. Liu, Z. Li, Z. Xie, D. Chen, Z. Zou, R. Zhang, Appl. Phys. Lett. 2008, 92, 262110.
- [18] M. Hamdani, R. N. Singh, P. Chartier, Int. J. Electrochem. Sci. 2010, 5, 556.
- [19] G. Spinolo, S. Ardizzone, S. Trasatti, J. Electroanal. Chem. 1997, 423,
- [20] A. J. Esswein, M. J. McMurdo, P. N. Ross, A. T. Bell, T. D. Tilley, J. Phys. Chem. C **2009**, 113, 15068.
- [21] V. G. Hadjiev, M. N. Iliev, I. V. Vergilov, J. Phys. C: Solid State Phys. 1988, 21, L199,
- [22] R. Abe, M. Higashi, K. Domen, J. Am. Chem. Soc. 2010, 132, 11828.
- [23] M. Hara, E. Chiba, A. Ishikawa, T. Takata, J. N. Kondo, K. Domen, J. Phys. Chem. B 2003, 107, 13441.
- [24] R. Boggio, A. Carugati, S. Trasatti, J. Appl. Electrochem. 1987, 17,
- [25] Y. Surendranath, M. Dincă, D. G. Nocera, J. Am. Chem. Soc. 2009,
- [26] X. J. Feng, T. J. LaTempa, J. I. Basham, G. K. Mor, O. K. Varghese, C. A. Grimes, Nano Lett. 2010, 10, 948.